Albany 2013: Book of Abstracts

category image Albany 2013
Conversation 18
June 11-15 2013
©Adenine Press (2012)

Development of nanoscale aptamer films for controlled release of encapsulated payloads

Aptamers are short, single stranded nucleic acids that fold into well-defined 3D structures which bind to a single target molecule (from small molecules to cells) with affinities and specificities that can rival those of antibodies (Jeong et al. 2009). Unlike antibodies, aptamers can be chemically synthesized eliminating the need for animals or cell culture, which also allows for selection under non-physiological conditions and broadens potential targets to include toxic molecules (Banka and Stockley, 2006). The compatibility of aptamers with nanomaterials, in combination with their affinity, selectivity, and conformational changes upon target interaction, have allowed for the development of a large number of therapeutic and targeted delivery systems in recent years exploiting these properties. Despite this, many challenges still exist as unprotected DNA is readily degraded by nucleases prevalent in biological and environmental systems (Bouchard et al. 2010). Embedding aptamers within multilayer polyelectrolyte films could provide a biodegradable shelter, while allowing the detection of diffusible small molecules. An understanding of these materials will allow for the eventual encapsulation of relevant payloads into aptamer-polyelectrolyte microcapsules towards the development of a controlled release system. In this work, films composed of natural polyelectrolytes chitosan and hyaluronan are employed due to their biocompatibility, strong presence in current literature, and amiability to layer-by-layer film construction. Initial progress towards the development of an aptamer-embedded polyelectrolyte film system will be presented.


  1. Jeong, E. Lee, J. W., Ellington, A. D. (2009). Applications of aptamers as sensors. Annu. Rev. Anal. Chem., 2: 241-264.
  2. Bunka, D. H. J., Stockley, P. G. (2006). Aptamers come of age—at last. Nature, 4: 588-596.
  3. Bouchard, P. R. Hutabarat, R. M. Thompson, K. M. (2010). Discovery and development of therapeutic aptamers. Annu. Rev. Pharmacol. Toxicol., 50: 237-57.

Amanda G. Foster*1
Yasir Sultan1
Carlos Monreal2
Maria C. DeRosa1

1Department of Chemistry Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
2Eastern Cereal and Oil Seed Research Centre, Agriculture and AgriFood Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6

Ph: (613) 520-2600 ext 3844
Fax: (613) 520-3749
Email: Maria_DeRosa@carleton.ca